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Abstract—The first formulation of an axisymmetric transient elastodynamic analysis by time
domain boundary element method is presented and is implemented in a general purpose system,
GPBEST. For the evaluation of boundary convolution integrals, both constant and linear variations
in the time domain of displacement and traction fields are given. Transformation of 3-D dynamic
kernels into cylindrical coordinates and the integration of kernels along circumferential direction
leads directly to an axisymmetric analysis with only 2-D boundary discretization. The numerical
integration of these kernels has been done carefully by preserving the causality so that very good
accuracy and reliability of the present analysis have been achieved, as can be seen in the examples
presented.

INTRODUCTION

For the advantages of the reduction by one dimension of problems and the ease of modelling
of unbounded domain, the time-domain boundary element method is gaining more attention
in transient dynamic problems of solid mechanics. The time-domain boundary element
formulation for the two-dimensional transient dynamic analysis using constant elements
has been implemented by Cole et al. (1978) for the scalar anti-plane strain problems. Using
essentially similar simple implementation, Niwa et al. (1980) solved two-dimensional wave
scattering problems, Mansur and Brebbia (1982) the two-dimensional transient scalar
problem, Mansur and Brebbia (1985) two-dimensional transient elastodynamic problems,
Rice and Sadd (1984) the anti-plane strain wave scattering problem, Spyrakos and Beskos
(1986) the transient dynamic response of rigid strip foundation, and Antes and von Estorff
(1986) used it for dynamic solid—fluid interaction analysis. All of these implementations
were rather crude and did not give results with sufficient accuracy. This situation has been
improved significantly by Israil and Banerjee (1989) in which they introduce higher-order
shape functions in space and time for the first time in a two-dimensional analysis.

Compared to two-dimensional problems, three-dimensional transient dynamic analysis
needs more computing efforts and much more sophisticated numerical implementation, and
consequently was not attempted until Karabalis and Beskos (1984) developed a simplified
formulation for the special case of rigid surface foundations. The first general three-
dimensional time-domain direct boundary element formulation for transient dynamic
analysis was given by Banerjee and Ahmad (1985) and Banerjee et al. (1986) using a
constant temporal and quadratic spatial interpolation function for the field variables. A
linear temporal variation was lately published by Ahmad and Banerjee (1988) for the
general three-dimensional transient elastodynamic analysis and was combined with the use
of domain integral by Ahmad (1986) for the inelastic transient analysis of a circular bar
under a step end load.

To the best of the authors’ knowledge, the numerical implementation of BEM for the
time domain axisymmetric transient dynamic analysis has not appeared in the published
literature. In this paper, the first numerical implementation for an axisymmetric transient
elastodynamic analysis by using the general three-dimensional formulation suggested by
Banerjee and Ahmad (1985) is proposed. The results of the analysis for a number of
axisymmetric problems have been verified by comparing with known analytical solutions.

TIME DOMAIN BEM FORMULATION

The governing equation for the dynamic small-displacement field #;(x, ¢) in an isotropic
homogeneous elastic body can be derived by considering the equations of equilibrium, the
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constitutive law and the kinematic equations as
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where b,(x. 1) is the body force, and ¢, and ¢, are the propagation velocities of the pressure
wave and shear wave. respectively, and are given as

'*' 2 12
¢ = (’* “) (2a)
p

1,2
()

in which A and u are Lamé constants and p is the mass density. At time ¢, considering a
domain ¥ bounded by surface S, the displacement at point { can be obtained via the
reciprocal work theorem in an integral form as
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where ¢;;is a constant, G;;(x, 7; ¢, £) and F;;(x, t; £, t) are the fundamental solutions (Appen-
dix A) which can be found in Eringen and Suhubi (1975). For a point £ within V, c;; is §;;,
for ¢ on a smooth boundary S, ¢;; = J,;/2, and ¢;; = 0 elsewhere. If the body force is absent
and the domain is initially at rest, then only the surface integrals remain, i.e.

(&, 1) = J; J;l [Gij(x, ;& Dti(x, T) — Fi(x, T &, )ui(x, 1)] dT dS(x). 4)

For axisymmetric problems, the field variables are independent of circumferential angle, so
the equation is expressed in cylindrical coordinates (7, 6, z) as

cii($, 1) =2 JL L L [Gii(x, 75 ¢, 0%, T) ~ Fij(x,7; &, Huj(x, 0] dr dO,. r, dL(x) (5)

where L is the generator of axisymmetric body and

ui(x, 1) = {"’("’ "} i, 1) = {"("’ ”}

u.(x,t) t.(x,0)

[G.. cos 0, +G,,sin0, G, 3c0s0,+G,ysin 0,,]

GI"' Gr.'
Gii(x, ;&) = = G G
31 33

G:r G::

. . F, F. Fy cos0,+F, sinf, F,;cos0, +F,;sin6,
Fij(xy T, é, t) = F F = FJI F] ‘
zr 22 3

Note that the factor 2 in eqn (5) is due to the symmetry of kernels G and F with respect to
the axis 6 = 0. The 6 component displacement is not seen here because it is independent of
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other components for axisymmetric problems and a direct integration with respect to 6
must be carried out. Unfortunately it is not possible to do this analytically because of the
discontinuous nature of the kernel functions (Appendix A) and therefore a suitable numeri-
cal integration scheme as discussed later is needed.

Time marching scheme
Considering an N-step time discretization ¢ = NAr and a discretization of generator
L=2XY_ | L,, wecan rewrite eqn (5) as

M N nAr
cui (&, NAD) =2 % J:- J; Zl J:"— - Gii(x,t; & nANt)(x,7)dr dB, r. dL,(x)

m= |
J- J- J l"'-(«ry T ; é’ ”At)u;(x, t) dt dex ’x dLm(x). (6)
=1JL 0 n- (n— DA?

So far, this equation still remains an exact solution because no approximation has been
made. Then the approximations of boundary displacements and tractions in the time
interval [(n— 1)At, nAt] are made as
ui(x,7) = Myui(x, (n—1)A1) + Maui(x, nAr) (7a)
tix,7) = M t;,(x, (n—1)A1) + M, t,(x, nAr) (7b)

and the quadratic approximations on the discrete element L,, are made as

w(x, ) = N*(x)u; (X, 1) = N'u,(x', )+ N2u(x2, 8) + N3u, (x>, 1) (7¢)
t(x, t) = NFQO)L(X*, ) = Nt (x", D+ N2t (x*, )+ N3t.(x, 0 (7d)

where M, and M, are the approximation function in time domain, N*(x) is an interpolation
function, and x* is the kth collocation boundary point on L,,. For a constant time approxi-
mation, M, vanishes and M, is 1, or M, = M, = 0.5 for a constant averaging approxi-
mation. If a linear time variation is used, we have for¢, <t < 1,

_ tb -7
M) = 2= (82)
M) =1 :: . (8b)

For isoparametric elements, interpolation functions are chosen to be the same as the shape
functions used in the mapping of boundary elements. For a quadratic element, these
interpolation functions or shape functions can be found in Banerjee and Butterfield (1981).
Thus equation (6) can be rewritten in the form

NAt
c;ui(E, NAD -2 Z f f J Gii(x,t ; &, NAOM, dtdl, N*(x)r. dL,,(x)1,(x*, NA?)
m= ] JL, (N-1)A:
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Choosing g collocating points on the generator L and letting & approach these collocating
points, and noting the fact that

t =1,
J Gij(x, ;& NAN f(1,— 1) dr =f Gix, 738, NAI—1,) [t —t,—7)dT (10a)
ty 0

f”F;,-(x,r;é,NAr)f(rb—r)dr=J” "6, 758 NAt=1,) f(t,—1,~)dt  (10b)
t, 0

we are able to form a set of equations in the following matrix form (Ahmad and Banerjee,
1988):

= [Ga){r(x*, NAD} + [Fi){u(x*, NAD} = [Gil{r(x*, (N— DAN} = [Fi){u(¥", (N—-DAn}
+N2—:I {[G5"+ 1{e(x*,nAD} — [F5~"* 'Hu(x*, nAD}
nm]

+[GY"*N{t(F, (n—=D)AD} = [FY" Hu(xt, (n—1)An}}. (11

Note that during every time step, only four more matrices have to be formed until the
largest distance between any two different points in the domain is smaller than the distance
travelled by the shear wave at which time all the new matrices will be null matrices (see
Appendix B). The coefficients in these matrices represent the effect on the current status
due to the dynamic history of displacements and the tractions in the domain at previous
times. After a certain time step all these effects have been included in the calculated matrices
if a bounded domain is considered and no further integration is necessary. After applying
boundary conditions and initial conditions, we get a system equation at the Nth time step
for the transient analysis as

[A:{X"} = [BI{Y"} = [ {x" "} + [B{Y"" "}

+ ;(—[AQ’""*']{X"}+[B’z’""“]{Y"}—[A‘?""‘"']{X""}+[37‘"+']{Y"“}) (12)

where X' denotes the unknown field variables and Y’ the known boundary conditions at
time ¢ = iAt.

NUMERICAL TREATMENTS

As seen in equation (6), the boundary discretization is needed only for the generator
of axisymmetric body just like any ordinary axisymmetric boundary element analyses. But
three levels of integrals of kernels have to be computed. First, the convolution integrals
with respect to time are evaluated according to the analytical procedure proposed by Ahmad
and Banerjee (1988), as shown in Appendix B.
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Second, the integrals along the circumferential direction cannot be evaluated ana-
lytically and therefore a numerical integration scheme must be used. This must be done
with sufficient care because each of the kernels G and F consists of two components, a
pressure wave propagation and a shear wave propagation, and as a result both kernels are
not continuous. Moreover, at the first (or the leading) time step, the kernel F is strongly
singular and the kernel G is weakly singular, which makes the application of ordinary
Gaussian quadrature difficult, especially in the integration of kernel F. As for the remaining
time steps, they are not singular and the integration is simpler provided one allows for the
discontinuous nature of these functions. At the first time step, kernel F is broken into two
parts,

(Fz"j rrans = (F:/ slalic+[(F;j trans. _(Fl,'j)slatic]'

The first part is identical to the kernel for elastostatics and contains the same strong
singularity. The integration of the static kernel with respect to 8 can be done analytically,
as was shown by Rizzo and Shippy (1979) and Mayr et al. (1980). The second part is no
longer strongly singular and therefore can be integrated numerically. The integration of G
is also carried out in the same way for the convenience of programming, although its
singularity is weaker. Since the transient kernels are not continuous functions, the interval
[0, ] during [(n— 1)At, nA¢] is divided into five segments for the first time step integration

Segment a: r(x, &) < c,(n—1)At

Segment b: c,(n— 1)Ar < r(x, &) < smaller of [¢c,nAt, ¢ (n—1)Al]

Segment c¢: smaller of [c,nAs, ¢ \(n—1)Af] < r(x, &) < greater of [c,nAt, ¢\ (n—1)A1]
Segment d: greater of [c,nAt, ¢ (n—1)Af] < r(x, &) < c,(n—1)At

Segment e: r(x, &) < c,(n—1)At

where r(x, £) is the distance between points (r,, 8,, z,) and (¢, 0, z;). Thus in each segment,
the integrated functions are made continuous and therefore better accuracy can be obtained
this way compared to a uniform segmentation or no segmentation with a number of
integrating points. Although transient kernels vanish in segments a and e, the integrations
on two segments are still needed for static kernels. The number of these segments depends
on the magnitude of the time step and the distance between point £ and the integrated ring
x(ry,0,,2,) within the 8, = 0, n interval. Because the coefficients of matrices {G] and [F]
found at the first time step are needed as leading matrices in each time step, very high
accuracy in the integration must be achieved to prevent build-up of errors. For this reason,
up to 10 Gaussian points in each segment are used ; moreover further segmentations are
needed if the point £ is close to the integrated ring. Although the cost of this integration is
high, it is only a small part of the time stepping analysis because it is needed only at the
first time step and the coefficients are reusable in other time steps.

For the remaining time steps, the kernels are regular and well behaved, so the entire
set of transient dynamic kernels can be numerically integrated in the circumferential direc-
tion. Since the integrals of kernels G and F vanish in segments a and e, only the numerical
integrations in three segments b, ¢ and d are needed. In each segment, only three Gaussian
points are used and total number of segments is no more than three, even when point x is
close to the integrated ring.

Finally, integration on the discrete elements of generator L must be carried out. At
the first time step, 10 segments are used and the number of Gaussian points in each segment
depends on the distance between the point £ and the integrated discrete element L,,. For
the remaining time steps, the exact interval where the integration is needed can be found
by examining the behavior of kernels; as a result, less computing effort during one time
step is needed compared to that at the first time step. Since the static G and F matrices are
automatically available during the calculation at the leading time step, the diagonal blocks
of F for the leading time step can be found by using the elastic solutions for the inflation
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and rigid body displacements for the static part (Nigam, 1980) and adding to them the
integrated result of the difference between the static and dynamic kernels in the usual
manner (Banerjee and Ahmad, 1985).

The analysis outlined above has been implemented in a general purpose analysis system
GPBEST and therefore automatically inherits its large infrastructural facilities such as
multiple regions, local boundary conditions, sliding interfaces, etc. The examples presented
below have been specially designed to demonstrate the accuracy and usefulness of this
implementation. Detailed engineering applications to more complex problems involving
multizone materials, sliding interfaces, etc. will be developed in a later paper.

NUMERICAL EXAMPLES

(1) Radial expansion of a spherical cavity in an infinite domain

Consider a spherical cavity (radius @) in an infinite medium (Poisson ratio v = 0.25)
under a suddenly applied internal pressure P, H(1). The analytical solution for displacement
can be found in the book by Timoshenko and Goodier (1979). This problem is analyzed
using the present analysis with an eight quadratic boundary element mesh (Fig. 1) and a
time step of At =0.17154a/c,. The displacement and the tangential stress at the cavity
surfaced are plotted in Figs 2 and 3 and are compared with the theoretical solutions.
Excellent results are obtained by using such a simple mesh. Note the theoretical tangential
stress jumps to —2/3 just after the internal pressure is applied, i.e. £ =0". To get this
compressive stress value, a smaller time step of A" = 0.25Ar is used for a three time step
analysis, the results of which are also shown in Fig. 3. The tangential stresses for the
remaining time steps are obtained by using the larger time step. Both the displacement and
the stress approach the corresponding elastostatic solutions as time increases.

(2) A point load on a half space

The second example for verification is a half space under a suddenly applied point
load. The analytical formulation of this problem was first given by Lord Rayleigh (1885).
Pekeris (1955) gave the theoretical solution for the axisymmetric case and the result for
Poisson ratio v = 0.25. The problem is again solved by the present analysis. A parabolic
distribution of circular load on a disk of radius = a (Fig. 4) is specified as the only applied
loading instead of a concentrated point force. For a point far away such an applied loading
is going to behave like a concentrated point force. A time step At = 0.1 a/c; is chosen. Two
discretizations are used of which mesh 1 has 30 elements including four elements on the
disk with a typical element length on the stress-free surface of 10c,At and mesh 2 has 61
elements including eight elements on the disk with a typical element length on the free

-

P=PH(t) —
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© Boundary Node

Fig. 1. Boundary discretization of a spherical cavity (radius a).
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Fig. 2. Radial displacement at the surface of spherical cavity under uniform internal pressure Po H(s).

1.5
1.0 A o o 0o
.S
_22
) )
.0
————— Theoretical Value
-5 © Present Analysis (At = 0.4a/c1)
: O  Present Analysis (At =0.1a/c;)
-1.8 1 1 ! - i 1
.2 1.8 2.8 3.8 4.0 5.8 6.0 7.0
c;t/a

Fig. 3. Tangential stress at the surface of spherical cavity under uniform internal pressure PoH(t).
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Fig. 4. A half space under surface loading P,(r/a—1)*H(t) and its boundary approximation.
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Fig. 5. Radial displacement at the surface of a half space by mesh 1 (At = 0.1a/c,).

surface of 3c,Ar. Henry and Banerjee (1988) found that a fictitious enclosing surface is
needed for a truncated boundary discretization to obtain the correct diagonal coefficients
of the F matrix in axisymmetric elastostatic and elastoplastic analyses. It is also needed in
the present transient analysis because of the use of static kernels in evaluating coefficients
at the first time step. On these enclosing surface elements, only the integration of static
kernels is needed so that the correct diagonal coefficients of the dynamic F matrix could be
evaluated. The results of the analysis are plotted in Figs 5-8. As expected, when the
observation point is further away from the loaded disk, both the radial and vertical
displacement histories are closer to the theoretical solutions. The finer mesh (mesh 2), as
expected, gives better results than the coarser one (mesh 1). The analysis correctly repro-

.9 .
\ \' 7
1
-1 L X \\
I
\i
6"“ \l=§
Fr 2T :
“\
-3fF Pekeris(1955) }
— —-— Present Analysis(r/a=3) A
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B Present Anﬂyﬁg(r/caQ)
-.5 L 1 ! 1 L
7] 2 4 .6 8 1.0

Fig. 6. Radial displacement at the surface of a half space by mesh 2 (A7 = 0.1a/c,).
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Fig. 7. Vertical displacement at the surface of a half space by mesh 1 (Ar = 0.1a/c,).

duces the arrival of Rayleigh waves although it is not implicitly present in the kernel
functions G and F.

(3) A circular notched bar under a compressive impulse

A circular notched bar (Fig. 9) supported by rollers at one end is subjected to a sudden
compressive loading at its free end. The Poisson ratio is 0.25 again. The elastic modulus E,
density p and the applied sudden load P,H(t) are given in consistent units as

E=12000 p=10 Py=0.5.

.4
3
2F
S
Spuy
Por
-1k
Pekeris(1955) %\
——-— Present Analysis(r/a=3) | i
E Ty Present Analysis(r/a = 6) \\
.................. Present Analysis(r/a = 9) ‘-:_\\ \
-3r E
S
-4 ! L 1 1 L 1 L L 1
3 2 + 5 .8 1.8 1.2 1.4 1.6 1.8 2.8
cat

Fig. 8. Vertical displacement at the surface of a half space by mesh 2 (A7 = 0.1a/c,).
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P(t) = Py H(t)

171
i A
|

P(t)
Fy = 500

Fig. 9. A notched circular bar supported at one end and subjected to vertical loading P,H(¢) at the
other end.

The displacement histories of the observation point at the edge of the notch are plotted
in Fig. 10 which are obtained by the present analysis with two different meshes (Figs 11
and 12). Figure 11 shows the one-region mesh having 22 elements and Fig. 12 the two-
region mesh having a total of 28 elements. In Fig. 10, it can be seen that the displacement
histories by two discretization are the same except that a small upward displacement
(amplified in Fig. 13) is found for the one-region discretization before the theoretical arrival
time of a pressure wave. The theoretical arrival time of the wavefront should be the time
for a wave travelling along the path ABC (Fig. 9) instead of the direct straight path DC.
Before theoretical arrival time, the displacement at point C should be zero. Antes and
von Estorff (1987) found a magnified version of such a problem in a two-dimensional
analysis of half space problems with a notch using constant boundary elements with a linear

.18
.................. No Notch (20 Elunentg)
.25} With Notch (2 Region Mesh)
© With Notch (1 Region Mesh)

N- -3

-.25
o Static Displacement With Notch

=18 P e e e s i - - - - - -

10-% i Gttt e
-.15 | Static Displacement Without Notch

~aaf

~.25r

-.3@ 1 1 ! 1 1 1 1 I 1 1

Time (sec)

Fig. 10. Vertical displacement at the edge of the notch (point C in Fig. 4).
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PR

Fig. 11. One-region discretization (22 elements) of a notched bar.

Fig. 12. Two-region discretization of a notched bar.
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Fig. 13. Convergence in the arrival time of wavefront at point C.

time variation. They suggested that to correct this error convex subregions should be used.
But in many cases, it is impossible to do so. In fact, this small error is a numerical error
due to the size of the time step and the approximations of the displacement field, especially
around the notch. Since the calculations of the coefficient matrices are never exact, there is
some false effect before the real wave arrives. If the adopted time steps are correct and the
discretization is sufficiently fine then such an error would vanish. To explore this, two
smaller fime steps and a finer mesh were used for a more detailed analysis. In Fig. 13,
focusing on this small error, we can see that as smaller time steps are used, this error
reduces. Note that the element length has to be compatible with the distance travelled by
the waves in a given time step for accurate integration and a good representation of
displacement and traction fields by using shape functions. The time step should be small
enough to keep the variations of displacement and traction fields linear in time. Of course,
a better way of avoiding this difficulty is to use a multiregion discretization or keep all
the regions convex whenever such a discretization is possible. Moreover, a multiregion
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(20— 5) P(8)

NN

P(t)

Tp = 0.0016 sec

¢

0.0008 sec.

Fig. 14. An underground spherical shell under a blast load on the ground surface.

discretization not only saves computing time, especially for long and slender domains, but
also improves the stability of the system. It can be seen that one-region results are never as
good as two-region results (Fig. 13).

(4) An underground spherical shell subject to a blasting on ground

An underground spherical concrete shell structure is shown in Fig. 14 and is subjected
to a triangular blast loading on the ground surface immediately above. The material
properties of soil and reinforced concrete are given as

Esoil =4.5x10° pSf Vsoil = 1/3 Psoil = 3.23 Ib-s?ft=*
Ene = 4.5x 108 psf  veone = 0.15  peone = 4.66 Ib-s? ft =4,
The blast load is modelled as (20 —r/20) P(¢) for r < 20 ft where P(t) is a triangular pulse

function (Fig. 14). To analyze the time-dependent response of a shell structure, a two-
region mesh as shown in Fig. 15 was used. Since the velocity of wave propagation in

W ................... +

]

| 1
{Z«lmmum
]

] +
H 1I
l 48 Elements and
i " 8 Fictitious Enclosing Elements

Fig. 15. Two-region boundary discretization for an underground spherical shell.
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Fig. 16. Vertical displacement at the top (point Q in Fig. 14) of the internal wall of an underground
spherical shell.

concrete is faster than that in soil, a coarser discretization can be used for the concrete shell
structure. Note that the ground surface is truncated at the distance that the wave had not
reached during the time of interest, so the mesh is a very simple one. If a longer response
is warranted, a truncated boundary well away from the shell may be needed. For the same
reason described in the second example, a fictitious enclosing surface having 10 enclosing
elements was used. The vertical displacement and tangential stress histories at point Q (see

Fig. 14) are plotted in Figs 16 and 17, respectively. The maximum tangential stress is about
1.03P, where P, is the maximum of P(¢).

1.2

L

Tp
Fig. 17. Tangential stress at the top (point Q in Fig. 14) of the internal wall of an underground
spherical shell.
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CONCLUSION

The time domain axisymmetric transient elastodynamic analysis by BEM has been
successfully implemented for the first time and also in a general system. The results are
verified by showing comparisons between numerical results and the theoretical solutions.
In the second example, the Rayleigh wave is generated by the present analysis although it
is not implicitly or explicitly seen in the dynamic kernels. It has been clarified that the
causality for BEM is still preserved for non-convex domain problems in the third example
if the appropriate time steps and discretization are used. With the versatility of such a general
system, it is possible to use sliding interfaces, spring supports, and higher order (cubic or
quartic) interpolation functions. Some of these will be explored in a future publication by
the authors.

REFERENCES

Ahmad, S. (1986). Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, State
University of New York at Buffalo.

Ahmad, S. and Banerjee, P. K. (1988). Time-domain transient elastodynamic analysis of 3-D solids by BEM. Int.
J. Num. Meth. Engng 26, 1709-1728.

Antes, H. and von Estorff, O. (1986) Dynamic soil-fluid interaction analysis by the boundary element method.
In BETECH 86 (Edited by C. A. Brebbia and J. J. Corner), pp. 687-698. Proc. 2nd Boundary Element Tech.
Conf., M.1.T., Boston. CM Publ., Southampton.

Antes, H. and von Estorff, O. (1987). On causality in dynamic response analysis by time-dependent boundary
clement methods. Earthquake Engng Struct. Dyn. 15, 865-870.

Banerjee, P. K. and Ahmad, S. (1985). Advanced three-dimensional dynamic analysis by boundary element. In
Proc. ASME Conf. on Advanced Topics in Boundary Element Analysis, Florida, Nov. 1985, AMD, Vol. 72,
pp. 65-81.

Banerjee, P. K., Ahmad, S. and Manolis, G. D. (1986). A time domain BEM for three-dimensional problems of
transient elastodynamics. Earthquake Engng Struct. Dyn. 14, 933-949.

Banerjee, P. K. and Butterfield, R. (1981). Boundary Element Methods in Enginering Science. McGraw-Hill,
London.

Cole, D. M., Koslof, D. D. and Minster, J. B. (1978). A numerical boundary integral equation method for
elastodynamics I. Bull. Seism. Soc. Am. 68, 1331--1357.

Eringen, A. C. and Suhubi, E. S. (1975). Elastodynamics. Academic Press, New York.

Henry, D. P, Jr. and Banerjee, P. K. (1988). A variable stiffness type boundary element formulation for
axisymmetric elastoplastic media. /nz. J. Num. Meth. Engng 26, 1005-1027.

Israil, A. S. M. and Banerjee, P. K. (1989). Advanced time-domain formulation of BEM for two-dimensional
transient elastodynamics. To appear in Int. J. Num. Meth. Engng.

Karabalis, D. L. and Beskos, D. E. (1984). Dynamic response of 3-D foundations by time domain boundary
element method. Final Report Part A, NSF Grant No. CEE-8024725, Department of Civil and Mineral
Engineering, University of Minnesota, Minneapolis, Minnesota.

Mansur, W. J. and Brebbia, C. A. (1982). Numerical implementation of the boundary element method for two
dimensional transient scalar wave propagation problems. Appl. Math. Model. 6, 299-306.

Mansur, W. J. and Brebbia, C. A. (1985). Transient elastodynamics. In Topics in Boundary Element Research
(Edited by C. A. Brebbia), Vol. 2, Chapter 5. Springer, Berlin.

Mayr, M., Drexler, W. and Kuhn G. (1980). A semianalytical boundary integral approach for axisymmetric
elastic bodies with arbitrary boundary conditions. Int. J. Solids Structures 16, 863-871.

Nigam, R. K. (1980). The boundary integral equation method for elastostatics problems involving axisymmetric
geometry and arbitrary boundary conditions. M.S. Thesis, University of Kentucky.

Niwa, Y., Fukui, T., Kato, S. and Fujiki, K. (1980). An application of the integral equation method to two-
dimensional elastodynamics. Theo. Appl. Mech., J. Engng Fac. Tokyo University 28, 281-290.

Pekeris, C. L. (1955). The seismic surface pulse. Proc. N.A.S., Vol. 41, pp. 469-480.

Rayleigh, Lord (1885). On waves propagated along the plane surface of an elastic solid. London Math. Soc. Proc.,
Vol. 17, pp. 4-11.

Rice, J. M. and Sadd, M. H. (1984). Propagation and scattering of SH-waves in semi-infinite domain using a
time-dependent boundary element method. J. Appl. Mech. ASME 51, 641-645.

Rizzo, F. J. and Shippy, D. J. (1979) A boundary integral approach to potential and elasticity problems for
axisymmetric bodies with arbitrary boundary conditions. Mech. Res. Com. 6, 99-103.

Spyrakos, C. C. and Beskos, D. E. (1986). Dynamic response of rigid strip foundations by time domain boundary
element method. Int. J. Num. Meth. Engng 23, 1547-1565.

Timoshenko, S. P. and Goodier, J. N. (1979). Theory of Elasticity, 3rd Edn., pp. 510-513. McGraw-Hill, New
York.

APPENDIX A: FUNDAMENTAL SOLUTIONS G, F;

l tieg
G,,(x,t;C, ) = Zit—p{caij—bij)'[ Ao(t—1—4Ar)dA

+a,[6(t—t—r/c,) ci=6(t—t—r/c;)/c3)+b,6(1— r-—r/cﬁ/c%}
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where
¥y d; .
a, = r_};. b, = Tl» Yi = X=G.
l Ley
Filxt;8,1)=— {—6(‘§(Sa,,—b,,)J' id(t—t—2rryda
4r e,
+(12a, =26, )[8(t—t—r/c.) —{(ca/c,) ot —1—r/c))]
+2ra, ;[0 (t—t—rlc)) —(cyjc))*d (t—1—r c)]
—c (1=2c3/e)d(t=t=rlc)+(r/c))d (t~1—r/c})}
—d,[0(t—t—ric)+(rfc)d’ (t—1—r c:)]}
where
PV Yl v Y+ 0 mM
i =lr—5~ Ciy = ;_3, d; = _j"j!‘_a b, =c,+d,

APPENDIX B: CONVOLUTION INTEGRALS NEEDED FOR G, AND F;

Ar
J‘ S(t—t—rc)dt = H(t—r/c)—H(—At—r ¢)
0

At
J. td(t—t—rc)de = (t—rfc)[H(t—r/c)~H(t—At—r ¢)]

0

At "le,
J J T38(t—t~ir)didt = {A22[H(t— Ar) — H(t— At— D]} Ve
0 I¢

Ar [*1 ¢
j J ird(t—t—ir)didr = t{iY2[H(t— ir) = H(t—= At—in]} & — {4} 3[H(1—ir) — H(— At = AD]} 1 &
0 bep

d(it—1—r/o)f(x,7)dt = At

LEAILY

n\t — —_—
_[ JenB) = fCo (1= DAD 0 1) A= ric)— H(e—nAt—rfc)].
d



